

The three different forms of the periods of the Morgan-Voyce sequence modulo odd primes

Lyes Ait Amrane*,** and Hacène Belbachir***

* USTHB/Faculty of Mathematics, LATN Laboratory, DG-RSDT BP 32, El Alia, 16111, Bab Ezzouar, Algiers ALGERIA

** Ecole nationale Supérieure d'Informatique (ESI) BP 68M Oued Smar, 16270, El Harrach, Algiers ALGERIA

*** USTHB/Faculty of Mathematics, RECITS Laboratory, DG-RSDT BP 32, El Alia, 16111, Bab Ezzouar, Algiers ALGERIA

l_ait_amrane@esi.dz, lyesait@gmail.com
hbelbachir@usthb.dz, hacenebelbachir@gmail.com

Abstract: In this paper we give the three different forms of the periods of the Morgan-Voyce sequence modulo odd primes p.

Keywords: Periods of sequences, Morgan-Voyce sequence, prime numbers, congruences.

Résumé : Dans cet article, nous donnons les trois formes différentes des périodes de la suite de Morgan-Voyce modulo les nombres premiers impairs p.

Mots clés : Périodes de suites, suites de Morgan-Voyce, nombres premiers, congruences.

1 Introduction

In dealing with electrical ladder networks, Morgan-Voyce [7] defined the two sequences $(V_n)_n$ and $(M_n)_n$ by

$$\begin{cases} V_0 = 1, \ V_1 = 1, \\ V_n = (2+t)V_{n-1} - V_{n-2}, & (n \ge 2), \end{cases}$$

and

$$\begin{cases}
M_0 = 0, & M_1 = 1, \\
M_n = (2+t)M_{n-1} - M_{n-2}, & (n \ge 2),
\end{cases}$$
(1)

where t is a parameter that we assume to be in \mathbb{Z} . As for the Fibonacci sequence, each element of the Morgan-Voyce sequences $(V_n)_{n\geq 1}$ and $(M_n)_{n\geq 1}$ can be expressed in Pascal's triangle as follows: [1, 2, 3, 8]

$$V_n = \sum_{k=0}^{n-1} \binom{n+k-1}{2k} t^k, \qquad (n \ge 1),$$

and

$$M_n = \sum_{k=0}^{n-1} \binom{n+k}{2k+1} t^k, \qquad (n \ge 1).$$
 (2)

The coefficients $\binom{n+k-1}{2k}$ and $\binom{n+k}{2k+1}$ are well known in the study of electrical networks. The coefficients $\binom{n+k-1}{2k}$ are exactly the lines of the DFF triangle given in Table 1 below [4], while The coefficients $\binom{n+k}{2k+1}$ form the lines of the DFFz triangle given in Table 2 below [5].

$n \backslash k$	0	1	2	3	4	5		$n \backslash k$	0	1	2	3	4	5	
1	1							1	1						
2	1	1						2	2	1					
3	1	3	1					3	3	4	1				
4	1	6	5	1				4	4	10	6	1			
5	1	10	15	7	1			5	5	20	21	8	1		
6	1	15	35	28	9	1		6	6	35	56	36	10	1	
:	:	:	:	:	:	:	٠	:	:	:	:	:	:	÷	٠.
Table 1. DFF triangle.					Table 2. DFFz triangle.										

In this paper, we look at the form of the Morgan-Voyce sequence $(M_n)_n$ modulo an odd prime p. The companion matrix of this sequence is $\binom{0}{-1} \binom{1}{2+t}$. This matrix is of determinant 1 and is therefore invertible modulo any integer $m \geq 2$. We deduce that the Morgan-Voyce sequence modulo m is simply periodic [9]. We denote the period of the sequence $(M_n \mod m)_{n\geq 0}$ by k(m), i.e., the smallest positive integer k such that $M_k \equiv 0 \mod m$ and $M_{k+1} \equiv 1 \mod m$. We denote by d(m) the smallest positive integer k such that $M_k \equiv 0 \mod m$.

The periodic properties of the Morgan-Voyce sequence have been studied in [1]. We recall that the terms for which $M_n \equiv 0 \mod m$ have subscripts that form an simple arithmetic progression [1, Theorem 2.4]. Thus we have

$$M_n \equiv 0 \bmod m \iff d(m) \mid n, \tag{3}$$

we deduce that d(m) divides k(m). We define a function l(m) by the equation d(m)l(m) = k(m), note that l(m) is an integer for all $m \ge 2$, it is the number of zeros in a period of the sequence $(M_n \mod m)_{n\ge 0}$.

We also recall the following:

Lemma 1 l(m) is the exponent to which $(-M_{d(m)-1})$ belongs modulo m, i.e., l(m) is the smallest positive integer n for which $(-1)^n M_{d(m)-1}^n \equiv 1 \mod m$.

Proof. See [1, Lemma 2.3] ■

Theorem 2 Let m > 2 be an integer and $p \neq 2$ a prime.

- (a) l(2) = 1 and l(m) = 1 or 2.
- (b) l(p) = 2 if and only if k(p) is even, in this case d(p) = k(p)/2.
- (c) l(p) = 1 if and only if k(p) is odd, in this case $d(p) = k(p) \neq p \pm 1$.
- (d) If m has prime factorization $\prod p_i^{e_i}$, then $d(m) = \text{lcm}(d(p_i^{e_i}))$.

Proof. See [1, Theorem 2.5]

Let $F(x) = x^2 - (2+t)x + 1$ be the characteristic polynomial of the sequence $(M_n)_n$ and let $\Delta = t^2 + 4t$ its discriminant. The complex roots of F(x) are $\alpha = 1/2\left((2+t) + \sqrt{\Delta}\right)$ and $\beta = 1/2\left((2+t) - \sqrt{\Delta}\right)$. If $\Delta \neq 0$ (i.e., $t \neq 0, -4$), we have Binet's formula [6]

$$M_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \qquad (n \ge 0). \tag{4}$$

Identity (4) gives a natural extension of the sequence $(M_n)_{n\geq 0}$ to negative values of n. Using the identity $\alpha^n\beta^n=1$, we find

$$M_{-n} = -M_n. (5)$$

If t = 0, then $M_n = n$ for any $n \ge 0$ and if t = -4, then $M_n = (-1)^{n+1}n$ for any $n \ge 0$. It is easy to see that Identity (5) holds also for $t \in \{0, -4\}$. We deduce that the recurrence relation $M_n = (2+t)M_{n-1} - M_{n-2}$ holds for the extended sequence for any $t \in \mathbb{Z}$.

Let $m \geq 2$ be an integer. Since we have Identity (5), one can show by induction on n that

$$M_{k(m)-n} \equiv -M_n \mod m, \qquad (n \ge 0). \tag{6}$$

We deduce from Identity (6) the following proposition which tells us that the sequence $(M_n \mod p)_n$, where p is an odd prime, has one of three forms given in the three tables below which are given for t = 1.

Proposition 3 Let p be an odd prime.

1. If l(p) = 1, then

$$M_{k(p)-i} \equiv -M_i \mod p, \qquad 0 \le i \le (k(p)-1)/2.$$
 (7)

2. If l(p) = 2, then

$$M_{d(p)-i} \equiv M_i \mod p, \qquad 0 \le i \le \lfloor d(p)/2 \rfloor,$$
 (8)

and

$$M_{k(p)-i} \equiv -M_i \mod p, \qquad 0 \le i \le d(p) - 1. \tag{9}$$

Proof. Assertion (1) follows from the Identity (6). To show assertion (2), assume that l(p) = 2, then d(p) = k(p)/2. We get from Lemma 1 that $M_{d(p)-1}^2 \equiv 1 \mod p$, which is equivalent to $M_{d(p)-1} \equiv \pm 1 \mod p$. Assume that $M_{d(p)-1} \equiv -1 \mod p$, then $M_{d(p)+1} = (2+t)M_{d(p)} - M_{d(p)-1} \equiv 1 \mod p$, hence k(p)|d(p) which is a contradiction. Thus, we must have $M_{d(p)-1} \equiv M_1 \mod p$. Since $M_{d(p)} \equiv M_0 \mod p$, one can show by induction on $i \geq 0$ that

$$M_{d(p)-i} \equiv M_i \mod p, \qquad i \ge 0,$$

from which we deduce (8). Identity (9) follows from Identity (6).

Remark 1 In case (1) of Proposition 3, the sequence $(M_n \mod p)_n$ is of the form

$$M_0, M_1, M_2, \dots, M_{(k(p)-1)/2}, -M_{(k(p)-1)/2}, \dots, -M_2, -M_1; M_0, M_1, \dots,$$

which corresponds to the examples in Table 1. In case (2) of Proposition 3, a period is composed of two opposite sign palindromes and are given as follows: if d(p) is even, the sequence $(M_n \mod p)_n$ is of the form

$$M_0, M_1, \dots, M_{d(p)/2-1}, M_{d(p)/2}, M_{d(p)/2-1}, \dots, M_{d(p)-1} \equiv M_1, M_{d(p)} \equiv M_0,$$

 $-M_1, \dots, -M_{d(p)/2-1}, -M_{d(p)/2}, -M_{d(p)/2-1}, \dots, -M_1; M_0, M_1, \dots,$

which corresponds to the examples in Table 2. If d(p) is odd, the sequence $(M_n \mod p)_n$ is of the form

$$M_0, M_1, \dots, M_{(d(p)-1)/2}, M_{(d(p)-1)/2}, \dots, M_{d(p)-1} \equiv M_1, M_{d(p)} \equiv M_0,$$

 $-M_1, \dots, -M_{(d(p)-1)/2}, -M_{(d(p)-1)/2}, \dots, -M_1; M_0, M_1, \dots,$

which corresponds to the examples in Table 3.

p	$(M_n \mod p)_n$	k(p)
11	, -,	$\frac{\kappa(P)}{5}$
	0,1,3,8,10;0,1	
19	0, 1, 3, 8, 2, 17, 11, 16, 18; 0, 1	9
29	0, 1, 3, 8, 21, 26, 28; 0, 1	7
31	0, 1, 3, 8, 21, 24, 20, 5, 26, 11, 7, 10, 23, 28, 30; 0, 1	15
53	0, 1, 3, 8, 21, 2, 38, 6, 33, 40, 34, 9, 46, 23, 30, 7, 44, 19, 13, 20, 47, 15, 51, 32, 45, 50, 52; 0, 10, 10, 10, 10, 10, 10, 10, 10, 10,	27
59	0, 1, 3, 8, 21, 55, 26, 23, 43, 47, 39, 11, 53, 30, 37, 22, 29, 6, 48, 20, 12, 16, 36, 33, 4, 38,	29
	51, 56, 58; 0, 1	
79	0, 1, 3, 8, 21, 55, 65, 61, 39, 56, 50, 15, 74, 49, 73, 12, 42, 35, 63, 75, 4, 16, 44, 37, 67,	39
	6, 30, 5, 64, 29, 23, 40, 18, 14, 24, 58, 71, 76, 78; 0, 1	
101	0, 1, 3, 8, 21, 55, 43, 74, 78, 59, 99, 36, 9, 92, 65, 2, 42, 23, 27, 58, 46, 80, 93, 98, 100; 0, 1	25
131	0, 1, 3, 8, 21, 55, 13, 115, 70, 95, 84, 26, 125, 87, 5, 59, 41, 64, 20, 127, 99, 39, 18, 15, 27,	65
	66, 40, 54, 122, 50, 28, 34, 74, 57, 97, 103, 81, 9, 77, 91, 65, 104, 116, 113, 92, 32, 4,	
	111, 67, 90, 72, 126, 44, 6, 105, 47, 36, 61, 16, 118, 76, 110, 123, 128, 130; 0, 1	
139	0, 1, 3, 8, 21, 55, 5, 99, 14, 82, 93, 58, 81, 46, 57, 125, 40, 134, 84, 118, 131, 136, 138; 0, 1	23
151	0, 1, 3, 8, 21, 55, 144, 75, 81, 17, 121, 44, 11, 140, 107, 30, 134, 70, 76, 7, 96, 130, 143,	25
	148, 150; 0, 1	
181	0, 1, 3, 8, 21, 55, 144, 15, 82, 50, 68, 154, 32, 123, 156, 164, 155, 120, 24, 133, 13, 87,	45
	67, 114, 94, 168, 48, 157, 61, 26, 17, 25, 58, 149, 27, 113, 131, 99, 166, 37, 126,	
	160, 173, 178, 180; 0, 1	
191	0, 1, 3, 8, 21, 55, 144, 186, 32, 101, 80, 139, 146, 108, 178, 44, 145, 9, 73, 19, 175, 124,	95
	6, 85, 58, 89, 18, 156, 68, 48, 76, 180, 82, 66, 116, 91, 157, 189, 28, 86, 39, 31, 54, 131,	
	148, 122, 27, 150, 41, 164, 69, 43, 60, 137, 160, 152, 105, 163, 2, 34, 100, 75, 125, 109,	
	11, 115, 143, 123, 35, 173, 102, 133, 106, 185, 67, 16, 172, 118, 182, 46, 147, 13,	
	83, 45, 52, 111, 90, 159, 5, 47, 136, 170, 183, 188, 190; 0, 1	

Table 1: Periods modulo small prims p for which k(p) is odd.

p	$(M_n \mod p)_n$	k(p)
3	0, 1, 0, 2; 0, 1	4
7	0, 1, 3, 1, 0, 6, 4, 6; 0, 1	8
23	0, 1, 3, 8, 21, 9, 6, 9, 21, 8, 3, 1, 0, 22, 20, 15, 2, 14, 17, 14, 2, 15, 20, 22; 0, 1	24
41	0, 1, 3, 8, 21, 14, 21, 8, 3, 1, 0, 40, 38, 33, 20, 27, 20, 33, 38, 40; 0, 1	20
43	0, 1, 3, 8, 21, 12, 15, 33, 41, 4, 14, 38, 14, 4, 41, 33, 15, 12, 21, 8, 3, 1, 0, 42, 40, 35, 22, 31,	44
	28, 10, 2, 39, 29, 5, 29, 39, 2, 10, 28, 31, 22, 35, 40, 42; 0, 1	
47	0, 1, 3, 8, 21, 8, 3, 1, 0, 46, 44, 39, 26, 39, 44, 46; 0, 1	16
83	0, 1, 3, 8, 21, 55, 61, 45, 74, 11, 42, 32, 54, 47, 4, 48, 57, 40, 63, 66, 52, 7, 52, 66, 63, 40,	84
	57, 48, 4, 47, 54, 32, 42, 11, 74, 45, 61, 55, 21, 8, 3, 1, 0, 82, 80, 75, 62, 28, 22, 38, 9, 72,	
	41, 51, 29, 36, 79, 35, 26, 43, 20, 17, 31, 76, 31, 17, 20, 43, 26, 35, 79, 36, 29, 51, 41,	
	72, 9, 38, 22, 28, 62, 75, 80, 82; 0, 1	
103	0, 1, 3, 8, 21, 55, 41, 68, 60, 9, 70, 98, 18, 59, 56, 6, 65, 86, 90, 81, 50, 69, 54, 93, 19, 67, 79,	104
	67, 19, 93, 54, 69, 50, 81, 90, 86, 65, 6, 56, 59, 18, 98, 70, 9, 60, 68, 41, 55, 21, 8, 3, 1, 0,	
	102, 100, 95, 82, 48, 62, 35, 43, 94, 33, 5, 85, 44, 47, 97, 38, 17, 13, 22, 53, 34, 49, 10,	
	84, 36, 24, 36, 84, 10, 49, 34, 53, 22, 13, 17, 38, 97, 47, 44, 85, 5, 33, 94, 43, 35,	
	62, 48, 82, 95, 100, 102; 0, 1	
107	0, 1, 3, 8, 21, 55, 37, 56, 24, 16, 24, 56, 37, 55, 21, 8, 3, 1, 0, 106, 104, 99, 86, 52, 70, 51, 83,	36
	91, 83, 51, 70, 52, 86, 99, 104, 106; 0, 1	

Table 2: Periods modulo small prims p for which k(p) and d(p) are even.

p	$(M_n \bmod p)_n$	k(p)
13	0, 1, 3, 8, 8, 3, 1, 0, 12, 10, 5, 5, 10, 12; 0, 1	14
17	0, 1, 3, 8, 4, 4, 8, 3, 1, 0, 16, 14, 9, 13, 13, 9, 14, 16; 0, 1	18
37	0, 1, 3, 8, 21, 18, 33, 7, 25, 31, 31, 25, 7, 33, 18, 21, 8, 3, 1, 0, 36, 34, 29, 16, 19, 4, 30, 12,	38
	6, 6, 12, 30, 4, 19, 16, 29, 34, 36; 0, 1	
61	0, 1, 3, 8, 21, 55, 22, 11, 11, 22, 55, 21, 8, 3, 1, 0, 60, 58, 53, 40, 6, 39, 50, 50, 39, 6, 40, 53,	30
	58, 60; 0, 1	
73	0, 1, 3, 8, 21, 55, 71, 12, 38, 29, 49, 45, 13, 67, 42, 59, 62, 54, 27, 27, 54, 62, 59, 42, 67, 13,	74
	45, 49, 29, 38, 12, 71, 55, 21, 8, 3, 1, 0, 72, 70, 65, 52, 18, 2, 61, 35, 44, 24, 28, 60, 6, 31,	
	14, 11, 19, 46, 46, 19, 11, 14, 31, 6, 60, 28, 24, 44, 35, 61, 2, 18, 52, 65, 70, 72; 0, 1	
89	0, 1, 3, 8, 21, 55, 55, 21, 8, 3, 1, 0, 88, 86, 81, 68, 34, 34, 68, 81, 86, 88; 0, 1	22
97	0, 1, 3, 8, 21, 55, 47, 86, 17, 62, 72, 57, 2, 46, 39, 71, 77, 63, 15, 79, 28, 5, 84, 53, 75, 75, 53,	98
	$\left[\begin{array}{llllllllllllllllllllllllllllllllllll$	
	42, 50, 11, 80, 35, 25, 40, 95, 51, 58, 26, 20, 34, 82, 18, 69, 92, 13, 44, 22, 22, 44, 13, 92,	
	69, 18, 82, 34, 20, 26, 58, 51, 95, 40, 25, 35, 80, 11, 50, 42, 76, 89, 94, 96; 0, 1	
109	0, 1, 3, 8, 21, 55, 35, 50, 6, 77, 7, 53, 43, 76, 76, 43, 53, 7, 77, 6, 50, 35, 55, 21, 8,	54
	3, 1, 0, 108, 106, 101, 88, 54, 74, 59, 103, 32, 102, 56, 66, 33, 33, 66, 56,	
	102, 32, 103, 59, 74, 54, 88, 101, 106, 108; 0, 1	
113	0, 1, 3, 8, 21, 55, 31, 38, 83, 98, 98, 83, 38, 31, 55, 21, 8, 3, 1, 0, 112, 110, 105, 92, 58, 82,	38
	75, 30, 15, 15, 30, 75, 82, 58, 92, 105, 110, 112; 0, 1	
149	0, 1, 3, 8, 21, 55, 144, 79, 93, 51, 60, 129, 29, 107, 143, 24, 78, 61, 105, 105, 61, 78, 24,	74
	143, 107, 29, 129, 60, 51, 93, 79, 144, 55, 21, 8, 3, 1, 0, 148, 146, 141, 128, 94, 5,	
	70, 56, 98, 89, 20, 120, 42, 6, 125, 71, 88, 44, 44, 88, 71, 125, 6, 42, 120	
	20, 89, 98, 56, 70, 5, 94, 128, 141, 146, 148; 0, 1	

Table 3: Periods modulo small prims p for which k(p) is even and d(p) is odd.

References

- [1] AIT-AMRANE, L., BELBACHIR, H., BETINA, K.: Periods of Morgan-Voyce sequences and elliptic curves. To appear in Mathematica Slovaca.
- [2] BELBACHIR, H., KOMATSU, T., SZALAY, L.: Characterization of linear recurrences associated to rays in Pascal's triangle. In: Diophantine analysis and related fields 2010. AIP Conf. Proc., 1264, Amer. Inst. Phys., Melville, NY, 2010, pp. 90–99.
- [3] BELBACHIR, H., KOMATSU, T., SZALAY, L.: Linear recurrences associated to rays in Pascal's triangle and combinatorial identities. Math. Slovaca **64** (2014), no. 2, 287–300.
- [4] FERRI, G., FACCIO, M., D.AMICO, A.: A new numerical triangle showing links with Fibonacci numbers, Fibonacci Quart. 29 (1991), no. 4, 316–320.
- [5] FERRI, G., FACCIO, M., D.AMICO, A.: Fibonacci numbers and ladder networks impedance. Fibonacci Quart. **30** (1992), no. 1, 62–67.
- [6] HORADAM, A. F.: New aspects of Morgan-Voyce polynomials. In: Applications of Fibonacci numbers, Vol. 7, Dordrecht, Graz, 1996, Kluwer Acad. Publ., 1998, pp. 161–176.
- [7] MORGAN-VOYCE, A. M.: Ladder network analysis using Fibonacci numbers, IRE. Trans. on Circuit Theory. 6 (1959), 321–322.

- [8] SWAMY, M. N. S.: Properties of the polynomials defined by Morgan-Voyce. Fibonacci Quart. 4 (1966), no. 1, 73–81.
- [9] VINCE, A.: Period of a linear recurrence, Acta Arith. 39 (1981), no. 4, 303–311.