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1 Introduction

In dealing with electrical ladder networks, Morgan-Voyce [7] defined the two sequences
(Vn)n and (Mn)n by

{

V0 = 1, V1 = 1,
Vn = (2 + t)Vn−1 − Vn−2, (n ≥ 2),

and
{

M0 = 0, M1 = 1,
Mn = (2 + t)Mn−1 −Mn−2, (n ≥ 2),

(1)

where t is a parameter that we assume to be in Z. As for the Fibonacci sequence, each
element of the Morgan-Voyce sequences (Vn)n≥1 and (Mn)n≥1 can be expressed in Pascal’s
triangle as follows: [1, 2, 3, 8]

Vn =
n−1
∑

k=0

(

n+ k − 1

2k

)

tk, (n ≥ 1),

and

Mn =
n−1
∑

k=0

(

n+ k

2k + 1

)

tk, (n ≥ 1). (2)

The coefficients
(

n+k−1
2k

)

and
(

n+k
2k+1

)

are well known in the study of electrical networks.

The coefficients
(

n+k−1
2k

)

are exactly the lines of the DFF triangle given in Table 1 below

[4], while The coefficients
(

n+k
2k+1

)

form the lines of the DFFz triangle given in Table 2
below [5].

n\k 0 1 2 3 4 5 . . .

1 1
2 1 1
3 1 3 1
4 1 6 5 1
5 1 10 15 7 1
6 1 15 35 28 9 1
...

...
...

...
...

...
...

. . .

n\k 0 1 2 3 4 5 . . .

1 1
2 2 1
3 3 4 1
4 4 10 6 1
5 5 20 21 8 1
6 6 35 56 36 10 1
...

...
...

...
...

...
...

. . .

Table 1. DFF triangle. Table 2. DFFz triangle.

In this paper, we look at the form of the Morgan-Voyce sequence (Mn)n modulo an odd
prime p. The companion matrix of this sequence is

(

0 1
−1 2+t

)

. This matrix is of determinant
1 and is therefore invertible modulo any integer m ≥ 2. We deduce that the Morgan-
Voyce sequence modulo m is simply periodic [9]. We denote the period of the sequence
(Mn mod m)n≥0 by k(m), i.e., the smallest positive integer k such that Mk ≡ 0 mod m
and Mk+1 ≡ 1 mod m. We denote by d(m) the smallest positive integer k such that
Mk ≡ 0 mod m.
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The periodic properties of the Morgan-Voyce sequence have been studied in [1]. We recall
that the terms for which Mn ≡ 0 mod m have subscripts that form an simple arithmetic
progression [1, Theorem 2.4]. Thus we have

Mn ≡ 0 mod m ⇐⇒ d(m) | n, (3)

we deduce that d(m) divides k(m). We define a function l(m) by the equation d(m)l(m) =
k(m), note that l(m) is an integer for all m ≥ 2, it is the number of zeros in a period of
the sequence (Mn mod m)n≥0.

We also recall the following:

Lemma 1 l(m) is the exponent to which (−Md(m)−1) belongs modulo m, i.e., l(m) is the
smallest positive integer n for which (−1)nMn

d(m)−1 ≡ 1 mod m.

Proof. See [1, Lemma 2.3]

Theorem 2 Let m > 2 be an integer and p 6= 2 a prime.

(a) l(2) = 1 and l(m) = 1 or 2.

(b) l(p) = 2 if and only if k(p) is even, in this case d(p) = k(p)/2.

(c) l(p) = 1 if and only if k(p) is odd, in this case d(p) = k(p) 6= p± 1.

(d) If m has prime factorization
∏

peii , then d(m) = lcm
(

d(peii )
)

.

Proof. See [1, Theorem 2.5]

Let F (x) = x2 − (2 + t)x+ 1 be the characteristic polynomial of the sequence (Mn)n and

let ∆ = t2 + 4t its discriminant. The complex roots of F (x) are α = 1/2
(

(2 + t) +
√
∆
)

and β = 1/2
(

(2 + t)−
√
∆
)

. If ∆ 6= 0 (i.e., t 6= 0,−4), we have Binet’s formula [6]

Mn =
αn − βn

α− β
, (n ≥ 0). (4)

Identity (4) gives a natural extension of the sequence (Mn)n≥0 to negative values of n.
Using the identity αnβn = 1, we find

M−n = −Mn. (5)

If t = 0, then Mn = n for any n ≥ 0 and if t = −4, then Mn = (−1)n+1n for any n ≥ 0. It
is easy to see that Identity (5) holds also for t ∈ {0,−4}. We deduce that the recurrence
relation Mn = (2 + t)Mn−1 −Mn−2 holds for the extended sequence for any t ∈ Z.

Let m ≥ 2 be an integer. Since we have Identity (5), one can show by induction on n that
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Mk(m)−n ≡ −Mn mod m, (n ≥ 0). (6)

We deduce from Identity (6) the following proposition which tells us that the sequence
(Mn mod p)n, where p is an odd prime, has one of three forms given in the three tables
below which are given for t = 1.

Proposition 3 Let p be an odd prime.

1. If l(p) = 1, then

Mk(p)−i ≡ −Mi mod p, 0 ≤ i ≤ (k(p)− 1)/2. (7)

2. If l(p) = 2, then

Md(p)−i ≡ Mi mod p, 0 ≤ i ≤ ⌊d(p)/2⌋, (8)

and
Mk(p)−i ≡ −Mi mod p, 0 ≤ i ≤ d(p)− 1. (9)

Proof. Assertion (1) follows from the Identity (6). To show assertion (2), assume that
l(p) = 2, then d(p) = k(p)/2. We get from Lemma 1 that M2

d(p)−1 ≡ 1 mod p, which is
equivalent to Md(p)−1 ≡ ±1 mod p. Assume that Md(p)−1 ≡ −1 mod p, then Md(p)+1 =
(2 + t)Md(p) − Md(p)−1 ≡ 1 mod p, hence k(p)|d(p) which is a contradiction. Thus, we
must have Md(p)−1 ≡ M1 mod p. Since Md(p) ≡ M0 mod p, one can show by induction on
i ≥ 0 that

Md(p)−i ≡ Mi mod p, i ≥ 0,

from which we deduce (8). Identity (9) follows from Identity (6).

Remark 1 In case (1) of Proposition 3, the sequence (Mn mod p)n is of the form

M0,M1,M2, . . . ,M(k(p)−1)/2,−M(k(p)−1)/2, . . . ,−M2,−M1;M0,M1, . . . ,

which corresponds to the examples in Table 1. In case (2) of Proposition 3, a period is
composed of two opposite sign palindromes and are given as follows: if d(p) is even, the
sequence (Mn mod p)n is of the form

M0,M1, . . . ,Md(p)/2−1,Md(p)/2,Md(p)/2−1, . . . ,Md(p)−1 ≡ M1,Md(p) ≡ M0,

−M1, . . . ,−Md(p)/2−1,−Md(p)/2,−Md(p)/2−1, . . . ,−M1;M0,M1, . . . ,

which corresponds to the examples in Table 2. If d(p) is odd, the sequence (Mn mod p)n
is of the form

M0,M1, . . . ,M(d(p)−1)/2,M(d(p)−1)/2, . . . ,Md(p)−1 ≡ M1,Md(p) ≡ M0,

−M1, . . . ,−M(d(p)−1)2,−M(d(p)−1)/2, . . . ,−M1;M0,M1, . . . ,

which corresponds to the examples in Table 3.
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p (Mn mod p)n k(p)
11 0, 1, 3, 8, 10; 0, 1 5
19 0, 1, 3, 8, 2, 17, 11, 16, 18; 0, 1 9
29 0, 1, 3, 8, 21, 26, 28; 0, 1 7
31 0, 1, 3, 8, 21, 24, 20, 5, 26, 11, 7, 10, 23, 28, 30; 0, 1 15
53 0, 1, 3, 8, 21, 2, 38, 6, 33, 40, 34, 9, 46, 23, 30, 7, 44, 19, 13, 20, 47, 15, 51, 32, 45, 50, 52; 0, 1 27
59 0, 1, 3, 8, 21, 55, 26, 23, 43, 47, 39, 11, 53, 30, 37, 22, 29, 6, 48, 20, 12, 16, 36, 33, 4, 38, 29

51, 56, 58; 0, 1
79 0, 1, 3, 8, 21, 55, 65, 61, 39, 56, 50, 15, 74, 49, 73, 12, 42, 35, 63, 75, 4, 16, 44, 37, 67, 39

6, 30, 5, 64, 29, 23, 40, 18, 14, 24, 58, 71, 76, 78; 0, 1
101 0, 1, 3, 8, 21, 55, 43, 74, 78, 59, 99, 36, 9, 92, 65, 2, 42, 23, 27, 58, 46, 80, 93, 98, 100; 0, 1 25
131 0, 1, 3, 8, 21, 55, 13, 115, 70, 95, 84, 26, 125, 87, 5, 59, 41, 64, 20, 127, 99, 39, 18, 15, 27, 65

66, 40, 54, 122, 50, 28, 34, 74, 57, 97, 103, 81, 9, 77, 91, 65, 104, 116, 113, 92, 32, 4,
111, 67, 90, 72, 126, 44, 6, 105, 47, 36, 61, 16, 118, 76, 110, 123, 128, 130; 0, 1

139 0, 1, 3, 8, 21, 55, 5, 99, 14, 82, 93, 58, 81, 46, 57, 125, 40, 134, 84, 118, 131, 136, 138; 0, 1 23
151 0, 1, 3, 8, 21, 55, 144, 75, 81, 17, 121, 44, 11, 140, 107, 30, 134, 70, 76, 7, 96, 130, 143, 25

148, 150; 0, 1
181 0, 1, 3, 8, 21, 55, 144, 15, 82, 50, 68, 154, 32, 123, 156, 164, 155, 120, 24, 133, 13, 87, 45

67, 114, 94, 168, 48, 157, 61, 26, 17, 25, 58, 149, 27, 113, 131, 99, 166, 37, 126,
160, 173, 178, 180; 0, 1

191 0, 1, 3, 8, 21, 55, 144, 186, 32, 101, 80, 139, 146, 108, 178, 44, 145, 9, 73, 19, 175, 124, 95
6, 85, 58, 89, 18, 156, 68, 48, 76, 180, 82, 66, 116, 91, 157, 189, 28, 86, 39, 31, 54, 131,
148, 122, 27, 150, 41, 164, 69, 43, 60, 137, 160, 152, 105, 163, 2, 34, 100, 75, 125, 109,

11, 115, 143, 123, 35, 173, 102, 133, 106, 185, 67, 16, 172, 118, 182, 46, 147, 13,
83, 45, 52, 111, 90, 159, 5, 47, 136, 170, 183, 188, 190; 0, 1

Table 1: Periods modulo small prims p for which k(p) is odd.

p (Mn mod p)n k(p)
3 0, 1, 0, 2; 0, 1 4
7 0, 1, 3, 1, 0, 6, 4, 6; 0, 1 8
23 0, 1, 3, 8, 21, 9, 6, 9, 21, 8, 3, 1, 0, 22, 20, 15, 2, 14, 17, 14, 2, 15, 20, 22; 0, 1 24
41 0, 1, 3, 8, 21, 14, 21, 8, 3, 1, 0, 40, 38, 33, 20, 27, 20, 33, 38, 40; 0, 1 20
43 0, 1, 3, 8, 21, 12, 15, 33, 41, 4, 14, 38, 14, 4, 41, 33, 15, 12, 21, 8, 3, 1, 0, 42, 40, 35, 22, 31, 44

28, 10, 2, 39, 29, 5, 29, 39, 2, 10, 28, 31, 22, 35, 40, 42; 0, 1
47 0, 1, 3, 8, 21, 8, 3, 1, 0, 46, 44, 39, 26, 39, 44, 46; 0, 1 16
83 0, 1, 3, 8, 21, 55, 61, 45, 74, 11, 42, 32, 54, 47, 4, 48, 57, 40, 63, 66, 52, 7, 52, 66, 63, 40, 84

57, 48, 4, 47, 54, 32, 42, 11, 74, 45, 61, 55, 21, 8, 3, 1, 0, 82, 80, 75, 62, 28, 22, 38, 9, 72,
41, 51, 29, 36, 79, 35, 26, 43, 20, 17, 31, 76, 31, 17, 20, 43, 26, 35, 79, 36, 29, 51, 41,

72, 9, 38, 22, 28, 62, 75, 80, 82; 0, 1
103 0, 1, 3, 8, 21, 55, 41, 68, 60, 9, 70, 98, 18, 59, 56, 6, 65, 86, 90, 81, 50, 69, 54, 93, 19, 67, 79, 104

67, 19, 93, 54, 69, 50, 81, 90, 86, 65, 6, 56, 59, 18, 98, 70, 9, 60, 68, 41, 55, 21, 8, 3, 1, 0,
102, 100, 95, 82, 48, 62, 35, 43, 94, 33, 5, 85, 44, 47, 97, 38, 17, 13, 22, 53, 34, 49, 10,

84, 36, 24, 36, 84, 10, 49, 34, 53, 22, 13, 17, 38, 97, 47, 44, 85, 5, 33, 94, 43, 35,
62, 48, 82, 95, 100, 102; 0, 1

107 0, 1, 3, 8, 21, 55, 37, 56, 24, 16, 24, 56, 37, 55, 21, 8, 3, 1, 0, 106, 104, 99, 86, 52, 70, 51, 83, 36
91, 83, 51, 70, 52, 86, 99, 104, 106; 0, 1

Table 2: Periods modulo small prims p for which k(p) and d(p) are even.
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p (Mn mod p)n k(p)
13 0, 1, 3, 8, 8, 3, 1, 0, 12, 10, 5, 5, 10, 12; 0, 1 14
17 0, 1, 3, 8, 4, 4, 8, 3, 1, 0, 16, 14, 9, 13, 13, 9, 14, 16; 0, 1 18
37 0, 1, 3, 8, 21, 18, 33, 7, 25, 31, 31, 25, 7, 33, 18, 21, 8, 3, 1, 0, 36, 34, 29, 16, 19, 4, 30, 12, 38

6, 6, 12, 30, 4, 19, 16, 29, 34, 36; 0, 1
61 0, 1, 3, 8, 21, 55, 22, 11, 11, 22, 55, 21, 8, 3, 1, 0, 60, 58, 53, 40, 6, 39, 50, 50, 39, 6, 40, 53, 30

58, 60; 0, 1
73 0, 1, 3, 8, 21, 55, 71, 12, 38, 29, 49, 45, 13, 67, 42, 59, 62, 54, 27, 27, 54, 62, 59, 42, 67, 13, 74

45, 49, 29, 38, 12, 71, 55, 21, 8, 3, 1, 0, 72, 70, 65, 52, 18, 2, 61, 35, 44, 24, 28, 60, 6, 31,
14, 11, 19, 46, 46, 19, 11, 14, 31, 6, 60, 28, 24, 44, 35, 61, 2, 18, 52, 65, 70, 72; 0, 1

89 0, 1, 3, 8, 21, 55, 55, 21, 8, 3, 1, 0, 88, 86, 81, 68, 34, 34, 68, 81, 86, 88; 0, 1 22
97 0, 1, 3, 8, 21, 55, 47, 86, 17, 62, 72, 57, 2, 46, 39, 71, 77, 63, 15, 79, 28, 5, 84, 53, 75, 75, 53, 98

84, 5, 28, 79, 15, 63, 77, 71, 39, 46, 2, 57, 72, 62, 17, 86, 47, 55, 21, 8, 3, 1, 0, 96, 94, 89, 76,
42, 50, 11, 80, 35, 25, 40, 95, 51, 58, 26, 20, 34, 82, 18, 69, 92, 13, 44, 22, 22, 44, 13, 92,

69, 18, 82, 34, 20, 26, 58, 51, 95, 40, 25, 35, 80, 11, 50, 42, 76, 89, 94, 96; 0, 1
109 0, 1, 3, 8, 21, 55, 35, 50, 6, 77, 7, 53, 43, 76, 76, 43, 53, 7, 77, 6, 50, 35, 55, 21, 8, 54

3, 1, 0, 108, 106, 101, 88, 54, 74, 59, 103, 32, 102, 56, 66, 33, 33, 66, 56,
102, 32, 103, 59, 74, 54, 88, 101, 106, 108; 0, 1

113 0, 1, 3, 8, 21, 55, 31, 38, 83, 98, 98, 83, 38, 31, 55, 21, 8, 3, 1, 0, 112, 110, 105, 92, 58, 82, 38
75, 30, 15, 15, 30, 75, 82, 58, 92, 105, 110, 112; 0, 1

149 0, 1, 3, 8, 21, 55, 144, 79, 93, 51, 60, 129, 29, 107, 143, 24, 78, 61, 105, 105, 61, 78, 24, 74
143, 107, 29, 129, 60, 51, 93, 79, 144, 55, 21, 8, 3, 1, 0, 148, 146, 141, 128, 94, 5,

70, 56, 98, 89, 20, 120, 42, 6, 125, 71, 88, 44, 44, 88, 71, 125, 6, 42, 120
20, 89, 98, 56, 70, 5, 94, 128, 141, 146, 148; 0, 1

Table 3: Periods modulo small prims p for which k(p) is even and d(p) is odd.
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